Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast.

نویسندگان

  • D Wolfe
  • T Reiner
  • J L Keeley
  • M Pizzini
  • R L Keil
چکیده

To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be involved in the ubiquitination pathway; (ii) ZZZ4, which we previously found is involved in anesthetic response, is identical to the DOA1/UFD3 gene, which was identified based on altered degradation of ubiquitinated proteins; (iii) analysis of zzz1Delta zzz4Delta double mutants suggests that these genes encode products involved in the same pathway for anesthetic response since the double mutant is no more resistant to anesthetic than either of the single mutant parents; (iv) ubiquitin ligase (MDP1/RSP5) mutants are altered in their response to isoflurane; and (v) mutants with decreased proteasome activity are resistant to isoflurane. The ZZZ1 and MDP1/RSP5 gene products appear to play important roles in determining effective anesthetic dose in yeast since increased levels of either gene increases isoflurane sensitivity whereas decreased activity decreases sensitivity. Like zzz4 strains, zzz1 mutants are resistant to all five volatile anesthetics tested, suggesting there are similarities in the mechanisms of action of a variety of volatile anesthetics in yeast and that ubiquitin metabolism affects response to all the agents examined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volatile anesthetics affect nutrient availability in yeast.

Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leu...

متن کامل

Molecular genetic analysis of volatile-anesthetic action.

The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volat...

متن کامل

Inhibition of Translation Initiation by Volatile Anesthetics Involves Nutrient-sensitive GCN-independent and GCN-dependent Processes in Yeast

Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved gener...

متن کامل

Inhibition of mammalian translation initiation by volatile anesthetics.

Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inh...

متن کامل

Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast.

Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 1999